Computation of a 30 750-bit binary field discrete logarithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of a 768-Bit Prime Field Discrete Logarithm

This paper reports on the number field sieve computation of a 768-bit prime field discrete logarithm, describes the different parameter optimizations and resulting algorithmic changes compared to the factorization of a 768-bit RSA modulus, and briefly discusses the cryptologic relevance of the result.

متن کامل

A Kilobit Hidden SNFS Discrete Logarithm Computation

We perform a special number field sieve discrete logarithm computation in a 1024-bit prime field. To our knowledge, this is the first kilobit-sized discrete logarithm computation ever reported for prime fields. This computation took a little over two months of calendar time on an academic cluster using the open-source CADO-NFS software. Our chosen prime p looks random, and p−1 has a 160-bit pri...

متن کامل

Solving a 676-Bit Discrete Logarithm Problem in GF(36n)

Pairings on elliptic curves over finite fields are crucial for constructing various cryptographic schemes. The ηT pairing on supersingular curves over GF(3) is particularly popular since it is efficiently implementable. Taking into account the Menezes-Okamoto-Vanstone (MOV) attack, the discrete logarithm problem (DLP) in GF(3) becomes a concern for the security of cryptosystems using ηT pairing...

متن کامل

Statistical Analysis of Binary Functional Graphs of the Discrete Logarithm

The increased use of cryptography to protect our personal information makes us want to understand the security of cryptosystems. The security of many cryptosystems relies on solving the discrete logarithm, which is thought to be relatively difficult. Therefore, we focus on the statistical analysis of certain properties of the graph of the discrete logarithm. We discovered the expected value and...

متن کامل

Solving the Discrete Logarithm of a 113-Bit Koblitz Curve with an FPGA Cluster

Using FPGAs to compute the discrete logarithms of elliptic curves is a well-known method. However, until to date only CPU clusters succeeded in computing new elliptic curve discrete logarithm records. This work presents a high-speed FPGA implementation that was used to compute the discrete logarithm of a 113-bit Koblitz curve. The core of the design is a fully unrolled, highly pipelined, self-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2021

ISSN: 0025-5718,1088-6842

DOI: 10.1090/mcom/3669